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Introduction

In an earlier article [1] we had discussed some aspects
of ancient Babylonian mathematics as deciphered from
various clay tablets excavated from modern Iraq, viz.
the Pythagoras theorem and also the sexagesimal num-
ber system prevalent during the ancient Mesopotamian
civilization. In this article, we study the exciting new
approach of the last decade in the decipherment and
interpretation of the Babylonian mathematical tablets.

In the 1930’s, following the discovery of a clay tablet
pertaining to mathematics and dating to the Old Baby-
lonian period (2000-1600 BCE), there was considerable
activity in Germany and France in the interpretation of
the tablets. The work of this period is to be found in the
compendiums of Neugebauer [2] and Thureau-Dangin [3]
whose analyses of the tablets are understandably influ-
enced deeply by the mathematics current at our times.

However mathematics, like any other subject, is not
culture-free; instead it is subject to the socially preva-
lent mores and conventions. Thus an understanding of
the culture, language and history of the Mesopotamian
civilization provides a better insight into the thought
processes of the ancient Babylonian mathematicians. In
this context, consider the following two examples given
by Robson [4].

If asked to draw a triangle, most of us would draw a tri-
angle with a horizontal base. However, a typical triangle
drawn on the tablets of ancient Babylon has a vertical
edge and the other two edges lying to the right of it, and
none of them horizontal (see Figure 1).

Also, if asked to give the formula for the area of a cir-
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Figure 1. A typical Baby-

lonian triangle.

1 This word will be translated as

‘confrontation’ in the subse-

quent sections.

In modern

mathematics the

circle is concept-

ualised as the area

generated by a

rotating line, the

radius. In ancient

Mesopotamia, by

contrast, a circle was

the shape contained

within an equidistant

circumference. Even

when the diameter of

a circle was known,

its area was

calculated by means

of the circumference.

cle, we would immediately say πr2. Even in a situation
where the radius r and circumference c were given to
us, we would not give the formula c2

4π
. The Babylonians,

however, preferred the latter, as has been attested in al-
most all tablets dealing with areas of circles. Indeed, as
Robson [4] writes “in modern mathematics the circle is
conceptualised as the area generated by a rotating line,
the radius. In ancient Mesopotamia, by contrast, a circle
was the shape contained within an equidistant circum-
ference. Even when the diameter of a circle was known,
its area was calculated by means of the circumference.
We also see this conceptualisation in the language used:
the word kippatum, literally ‘thing that curves’, means
both the two-dimensional disc and the one-dimensional
circumference that defines it. The conceptual and lin-
guistic identification of a plane figure and one of its ex-
ternal lines is a key feature of Mesopotamian mathemat-
ics. For instance, the word mithartum1 (“thing that is
equal and opposite to itself”) means both “square” and
“side of square”. We run into big interpretational prob-
lems if we ignore these crucial terminological differences
between ancient Mesopotamian and our own mathemat-
ics”.

Nearly all the problems involving ‘quadratic equations’
are stated in terms of length, width, square, surface,
height and volume. The solutions given in the tablets
also use these terms. The earlier translations took these
terms to be generic for the variables x (length), y (width),
x2 (square), xy (surface), z (height) and xyz (volume).
The translations from the tablets were as described by
Neugebauer himself as being “substantially accurate”
in the sense that the mathematical substance of the
text was retained. Jens Høyrup rereads the tablets and
presents a “conformal translation”, which he describes
as a translation which maps the original structure (i.e.,
subject, object, verb construction) and retains the et-
ymological meaning of the Mesopotamian words. This
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The ‘Astronomical

Diaries’, which is the

record of systematic

observations of the

heavenly bodies

from 800/700 BCE

to 100 BCE, is

probably the longest

uninterrupted stretch

of scientific research

in the history of any

civilization.

research of Jens Høyrup over the past decade (presented
in Høyrup [5]) provides a geometric understanding of
the Babylonian methods. The geometric understand-
ing, however, does not preclude the algebraic structure
lying behind these solutions.

In Section 2 we consider three algebraic problems of the
old Babylonian period. In Section 3 we discuss two geo-
metric problems from this same period, and here we see
the difference in the geometry used to study the alge-
braic and the geometric problems.

The usefulness of the Babylonian study of mathemat-
ics is to be seen in the development of astronomy. The
study of astronomy in the Babylonian civilization dates
from 1800 BCE to 300 BCE – although the most impor-
tant work was done during the latter half of this period.
Indeed, the ‘Astronomical Diaries’, which is the record
of systematic observations of the heavenly bodies from
800/700 BCE to 100 BCE, is probably the longest un-
interrupted stretch of scientific research in the history
of any civilization. The Babylonian astronomers were
indeed renowned for their work in their times as may
be read from the book ‘Geography’ by the Greek geogra-
pher Strabo of Amasia: “In Babylon a settlement is set
apart for the local philosopher, the Chaldaeans, as they
are called, who are concerned mostly with astronomy;
but some of these who are not approved of by the others
profess to be writers of horoscopes. There are also sev-
eral tribes of the Chaldaean astronomers. For example,
some are called Orcheni, others Borsippeni, and several
others by different names, as though divided into differ-
ent sects which hold to various different dogmas about
the same subjects. And the mathematicians make men-
tion of some of these men: as, for example, Cidenas,
Naburianus and Sudines”.

The influence of this work on Greek astronomical work
is apparent. Not only was the Babylonian sexagesi-
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The Babylonian

development of

mathematics for their

astronomical studies

contributed both the

arithmetic and the

geometric methods of

the Greek studies.

mal number system (Box 1) adopted by the Greeks for
their astronomical work, the Babylonian development of
mathematics for their astronomical studies contributed
both the arithmetic and the geometric methods of the
Greek studies, in addition to supplying the empirical ob-
servations which were used to build these mathematical
theories. The Greeks were to further this study by their
theories of arcs and chords to determine positions of
celestial bodies. It is the latter which found full expres-
sion in the trignometric works of Aryabhata and other
Indian mathematicians. The Babylonian work also in-
fluenced Indian astronomy, as is shown in Neugebauer
[1969], where he shows through various examples how
whole sections of Varahamira’s Pancha Siddhantika may

Box 1. An Aside on the Sexagesimal Number System

To understand the sexagesimal number system, we first look at the familiar decimal number
system, which is a positional system with base 10. Here the number 237 is understood to be
(2× 102) + (3× 101) + (7× 100), while the number 0.237 is (2× 1

10 ) + (3× 1
102 ) + (7× 1

103 ).
We need 10 different digits 0, 1, . . . , 9 to express any number in this system. Computers
however use a binary number system based on the two digits 0, 1. Thus the decimal number
27 = (1× 24) + (1× 23) + (0× 22) + (1× 21) + (1× 20) will be translated as 11011 by the
computer for its calculations, while the binary number 0.1011 is equivalent to the decimal
number (1× 1

2 )+(0× 1
22 )+(1× 1

23 )+(1× 1
24 ) = 0.6875. The sexagesimal system needs 60 digits,

which for the present purpose and rather unimaginatively we denote by 0̄, 1̄, . . . , 5̄8, 5̄9. Here
the sexagesimal number 2̄49̄ equals (24×601)+(9×600) = 1449 in the decimal system, while
the sexagesimal fraction 0; 2̄49̄ equals the decimal number (24× 1

60 )+(9× 1
602 ) = 0.4025. In

modern mathematics, whenever a possibility of ambiguity arises, we write 237(mod 10) to
express the number 237 in the decimal system, 1011(mod 2) for the binary number 1011 and
0.2̄49̄(mod 60) for the sexagesimal number 2̄49̄. Note however that when just one number
system is in use, one does not need to have a mathematical understanding of decomposition
of a number in terms of its base . . . 102, 101, 100, 10−1, . . . or . . . 602, 601, 600, 60−1, . . . for
day-to-day use.

The representation of the Babylonian number system was rather cumbersome. They had
a symbol for 1, a symbol for 10 and a symbol for 60. The digits 1 to 9 were expressed by
writing the requisite number of 1’s, either consecutively or bunched together in groups of
three with one group on top of another. Similarly the ‘digits’ 10, 20, . . . , 50 were expressed
by the requisite number of 10’s, etc. Thus the number 147 would be represented by two
symbols of 60, two of 10 and seven of 1. The digit 0 was not used and presumed to be
understood from the context, although in the later Babylonian period it was denoted by a
wedge.
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2 This translation from [2] is by

Robson [7] in her review of the

book Höyrup [5]  which ap-

peared on the MAA Online book

review website.

3 The word ‘confrontation’ is

used by Höyrup  to translate

the  Baby lon ian  word

‘mithartum’ to convey the sense

“a confrontation of equals, viz.

the square configuration pa-

rametrized by its side”; see also

Section 1.

be explained by means of the Babylonian planetary texts.

This evidence of a Babylonian influence on Greek and
Indian mathematics reveals the exaggeration in the as-
sertions of the ‘greatest contributions’ of India in math-
ematics (e.g.[6] “the invention of the decimal notation
and creation of modern arithmetic; the invention of the
sine and cosine functions leading to the creation of mod-
ern trigonometry and creation of algebra”) and places
the post-Vedic Indian contribution to mathematics and
astronomy in the proper historical context. As in mod-
ern academics, in the ancient Chinese, Greek and Indian
studies we find a continuity which is built on earlier
works from other civilizations and other cultures.

Algebra

In this section we discuss the problems from three tablets
of the Old Babylonian period.

Consider the problem2 from the tablet BM 13901 #1:

I totalled the area and (the side of) my square: it is
0; 4̄5.

Clearly the problem may be written as x2 + x = 0; 4̄5,
where x is the (unknown) length of the side of a square.
This equation we wrote involving the symbol x is, of
course, a modern transcription of the problem.

To understand the above problem in the Babylonian cul-
tural milieu, we see the ‘conformal’ translation in [5] of
the problem together with its solution as given on the
tablet3:

The surface and my confrontation I have accumu-
lated: 0; 4̄5 is it. 1̄, the projection,
you posit. The moiety of 1̄ you break, 0; 3̄0 and 0; 3̄0
you make hold.
0; 1̄5 and 0; 4̄5 you append: by 1̄, 1̄ is the equalside.
0; 3̄0 which you have made hold
in the inside of 1̄ you tear out: 0; 3̄0 the confronta-
tion.
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   (a)   (a)   (a)   (a)   (a) (b)(b)(b)(b)(b)             (c)            (c)            (c)            (c)            (c)

Figure 2. The unknown

square is hatched and to it

is appended a rectangle of

length 1. The area of the

resulting rectangle is x2 + x,

which is given to be 0;45.

Figure 3. In (a) the appended

rectangle is bisected, in (b)

it is made to ‘hold’ and in (c)

the bigger square is formed

by appending the smaller

square of size  0;30  0; 30.

This yields (x +  0; 30) as the

length of a side of the big-

ger square of area 1; there-

by x= 0; 30.

4 ibid. Höyrup [5], pg 71.

The first sentence says that the surface of the square
and its edge are combined to give an area 0; 4̄5. Since a
1-dimensional object and a two dimensional object can-
not be added ‘geometrically’, the second sentence of the
problem says that the 1-dimensional line is transformed
into a 2-dimensional surface by giving it a thickness 1.
Thus geometrically we have Figure 2.

The next two sentences ask us to bisect the newly pro-
jected surface and let the two pieces hold together. Next
it asks us to append the square of area 0; 1̄5 (i.e., of
sides 0; 3̄0) to the figure constructed earlier and obtain
a square of area 0; 1̄5+0; 4̄5 = 1̄. These steps are shown
in Figure 3.

In this larger square of area 1 (Figure 3c), the dotted
part of the edge has length 0; 3̄0 and thus the length of
the edge of the unknown square is 0; 3̄0.

In the language of modern mathematics, the first and
the second lines produce the equation x2 +x× 1 = 0; 4̄5
as given in Figure 2. In the next few lines, the rectangle
x×1 is broken into x× 1

2
+x× 1

2
(Figure 3a and 3b) and

then we ‘complete the square’ by adding 0; 3̄0 × 0; 3̄0
(Figure 3c) to obtain x2 + x × 1

2
+ x × 1

2
+ 0; 3̄0

2
=

0; 4̄5 + 0; 3̄0
2
, i.e. (x+ 0; 3̄0)2 = 1; from which we obtain

that x = 0; 3̄0.

Høyrup [5] analyses the texts of many such tablets and
arrives at similar geometric solutions. To show that be-
hind all these geometry there is an underlying algebraic
structure we consider the bi-quadratic problem from the
tablet4 BM 13901 # 12:
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Figure 4. BM 13901 # 12 —

holding together.

The surfaces of my two confrontations I have accu-
mulated: 0; 2̄14̄0.
My confrontations I have made hold: 0; 1̄0.

This problem asks us to find the lengths of the sides of
two squares, given that the sum of their areas is 0; 2̄14̄0
and the product of the two lengths is 0; 1̄0. The solution
as presented on the tablet is:

The moiety of 0; 2̄14̄0 you break: 0; 1̄05̄0 and 0; 1̄05̄0
you make hold,
0; 1̄5̄72̄14̄0 is it. 0; 1̄0 and 0; 1̄0 you make hold, 0; 1̄4̄0
inside 0; 1̄5̄72̄14̄0 you tear out: by 0; 0̄1̄72̄14̄0, 0; 4̄1̄0
is equalside.
0; 4̄1̄0 to one 0; 1̄05̄0 you append: by 0; 1̄5, 0; 3̄0 is
equalside.
0; 3̄0 the first confrontation.
0; 4̄1̄0 inside the second 0; 1̄05̄0 you tear out: by
0; 6̄4̄0, 0; 2̄0 is equalside.
0; 2̄0 the second confrontation.

In this problem we understand the full import of the
algebraic methods used in these geometric solutions.

The first sentence asks us to bisect a line of length
0; 2̄14̄0 and then make each of the equal parts form a
square of area 0; 1̄5̄72̄14̄0.

Taking u and v to be the unknown lengths of the two
squares we have, from Figure 4, AB = u2, BC = v2,
G is the mid-point of AC = AB + BC = 0; 2̄14̄0 and
AGA′D is the square of sides (u2 + v2)/2 = 0; 1̄5̄72̄14̄0
each. In Figure 4, the point B′ is such that GB′ = GB.
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Figure 5. BM 13901 # 12 —

tearing out.

The next sentence asks us to tear out an area 0; 1̄4̄0 =
0; 1̄0 × 0; 1̄0 from AGA′D to leave an area 0; 0̄1̄72̄14̄0,
which is the area of a square of sides 0; 4̄1̄0 each.

Here although the area 0; 1̄4̄0 = 0; 1̄0 × 0; 1̄0 is ex-
pressed as that formed by ‘holding’ two sides of length
0; 1̄0 each, experts believe that this area is obtained as
the area of a rectangle with sides of length u2 and v2.
In Figure 5, this is depicted by the rectangle EF ′D′F .
Now the rectangles ABFD and A′B′F ′D′ are congruent.
Thus the region ABEB′A′D has area 0; 1̄4̄0, and so af-
ter ‘tearing’ this region out from the square AGA′D we
are left with a square BGB′E of area 0; 0̄1̄72̄14̄0. Now
BG = (u2 − v2)/2) = 0; 4̄1̄0.

The next few sentences obtain u and v from the relation
u2 = ((u2+v2)/2)+((u2−v2)/2) and v2 = ((u2+v2)/2)−
((u2 − v2)/2).

Finally, we look at a problem from the tablet YBC 6504.
This tablet has four problems together with their solu-
tions. In all of these there is a rectangle of size l × w
from which we are asked to ‘tear out’ a square of size
(l − w) × (l − w) to leave a resultant area of 0; 8̄2̄0. In
each of the four problems we have to obtain l and w,
when (i) l − w or (ii) l + w or (iii) l or (iv) w is given.
We discuss the second problem of this tablet, i.e. when
l + w is given. As we will see in the next section, a
similar construction is made in a geometry problem.

So much as length over width goes beyond, I have
made confront itself, from the inside of the surface I
have torn it out:
0; 8̄2̄0. Length and width accumulated: 0; 5̄0. By
your proceeding,
0; 5̄0 you make hold: 0; 4̄14̄0 you posit.
0; 4̄14̄0 to 0; 8̄2̄0 you append: 0; 5̄0 you posit.
A 5̄th part you detach: 0; 1̄2 you posit.
0; 1̄2 to 0; 5̄0 you raise: 01̄0 you posit
Half of 0; 5̄0 you break: 0; 2̄5 you posit
0; 2̄5 you make hold: 0; 1̄02̄5 you posit
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Figure 6. The construction

for YBC 6504 # 2.
0; 1̄0 from 0; 1̄02̄5 you tear out: 0; 0̄2̄5 you posit.
By 0; 0̄2̄5, 0; 5̄ is equalside. 0; 5̄ to 0; 2̄5 you append:
0; 3̄0, the length, you posit.
0; 5̄ from 0; 2̄5 you tear out:
0; 2̄0, the width, you posit.

We explain the solution with the help of Figure 6, which
is the construction suggested by the solution.

In Figure 6, as suggested in the first sentence on the
tablet, ABCD is the rectangle, from which the square
EFGC is ‘torn out’ leaving an area 0; 8̄2̄0. The second
sentence asks us to ‘accumulate’ the length l and width
w to form the line AH of length 0; 5̄0. The third sentence
asks us to ‘make hold’, i.e. make the square AHKL from
the line AH of area 0; 5̄0 × 0; 5̄0 = 0; 4̄14̄0. The fourth
sentence “0; 4̄14̄0 to 0; 8̄2̄0 you append: 0; 5̄0 you posit”
suggests that we add the area of the square AHKL to
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5 In a personal communication

SG Dani points out that “avoid-

ing to draw figures especially

in formal communications is to

be found even today; the rea-

sons are presumably different

but the parallel is intriguing”.

6 ibid. Höyrup [5].

that of the region ABEFGD. Since the shaded smaller
square inside AHKL is congruent to the ‘torn’ square
EFGC, we have that 0; 5̄0 is equal to the area of five
of the original rectangles ABCD. In the fifth sentence
we are asked to “a 5̄th part you detach: 0; 1̄2 you posit”
which translates to 1/5 = 0; 1̄2 and the next sentence
says that 0; 1̄2 × 0; 5̄0 = 0; 1̄0. Now having obtained
lw = 0; 1̄0 and knowing that l+w = 0; 5̄0, the next few
sentences sets up the equations (1/2)(l+w) = 0; 2̄5 and
(1/2)(l − w) = 0; 5̄ to obtain l = 0; 3̄0 and w = 0; 2̄0.

It should be noted here that regarding this geometric so-
lution no clay tablet has been found that contains these
figures . Thus evidence as in a ‘smoking gun’ is not
present to validate Høyrup’s method based on his con-
formal translation. Although it may appear that an ab-
sence of a confirmation of Høyrup’s analysis, in terms
of figures on clay tablets, undermines the validity of his
geometric solutions, they are in fact in complete and
faithful accord with the texts of the tablets5.

Morever there is incidental evidence to support Høyrup’s
methods. First, as observed from tablets connected with
land measurements, there are drawings of plots of land
where the lengths, widths and angles are not in ac-
cord with those given numerically, i.e. the drawings do
not respect scale or angles (e.g., see Figure 7 from the
tablet IM 55357 given in this article). Instead these are6

“structure diagrams ... to identify and summarize the
role of measured segments”. This suggests that a lot of
the mathematics may have been carried out as ‘mental
geometry’ (akin to the ‘mental arithmetic’ of our times).
Second it has been suggested that cuneiform writing was
practised on sand of the school yard; in which case these
figures could also be drawn on sand (again similar to cal-
culations on ‘rough paper’ of our times). Indeed the use
of sand or dustboard in ancient Greece is also supported
by familiar anecdotes of Archimedes drawing figures on
sand. The Greek word for the dustboard is ‘abacus’,
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Figure 7. IM 55357.

which is etymologically related to the Semitic word ’abaq
suggesting that the dustboard may have been originally
from the Syro-Phoenician area. The close connections in
ancient times of Mesopotamia and the Syro-Phoenician
region strengthen the contention that the dustboard may
have been available to the Babylonians.

To conclude this section we quote from [5] “Old Baby-
lonian ‘algebra’ remained an art , not a science, if this
is understood as an Aristotelian episteme whose aim is
principles . On this account, however, any supposed al-
gebra before Viète forsakes, however deep its insights. If
we accept to speak of (say) Indian, Islamic, or Latin/Ita-
lian medieval ‘algebra’ as algebra, then we may safely
drop the quotation marks and speak of Old Babylonian
algebra without reserve”.

Geometry

Regarding the geometry of the Babylonians, we had ear-
lier [1] discussed some tablets related to the Pythago-
ras’ theorem. As far as calculations of areas are con-
cerned, the Babylonians knew methods to calculate the
areas of right-angled triangles, rectangles and trapez-
ium. For nearly rectangular quadrilaterals they would
use the ‘surveyor’s formula’ which is the product of the
average of the lengths and the average of the widths of
the quadrilateral. The error inherent in this formula was
also realized and so occassionally quadrilaterals were de-
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7 This unconventional use of the

word has its root in the history

of Babylon. When writing was

introduced in the fourth millen-

nium BCE, it was on small tab-

lets and the direction of writing

was vertical. Later when writ-

ing on larger clay tablets, the

scr ibes  ro ta ted the  tab le ts

anticlockwise and wrote from

left to right; thus what was ‘up’

earlier became left, although

the use of the word ‘up’ re-

mained.

composed into smaller pieces so as to get a good approx-
imation of their areas.

In this section we present problems from two tablets.
The first tablet we discuss is IM 55357. Figure 7 is a
reproduction with identifying letters of the figure on the
clay tablet of the problem.

A triangle 1̄0̄ the length, 1̄1̄5 the long length, 4̄5 the
upper width.
2̄23̄0 the complete surface. In 2̄23̄0 the complete sur-
face, 8̄6̄ the upper surface.
5̄1̄1; 2̄2̄4 the next surface, 3̄1̄9; 3̄5̄69̄3̄6 the 3rd sur-
face.
5̄5̄3; 5̄33̄95̄02̄4 the lower surface.
The upper length, the shoulder length, the lower
length and the descendant what?
You, to know the proceeding, igi 1̄0̄, the length de-
tach, to 4̄5 raise,
0; 4̄5 you see. 0; 4̄5 to 2̄ raise, 1̄; 3̄0 you see, to 8̄6̄ the
upper surface
raise, 1̄29̄ you see. By 1̄29̄, what is equalside? 2̄7 is
equalside.
2̄7 the width, 2̄7 break, 1̄3; 3̄0 you see. Igi 1̄3; 3̄0 de-
tach,
to 8̄6̄ the upper surface raise, 3̄6 you see, the length
which is the counterpart of the length 4̄5, the width.
Turn around. The length 2̄7, of the upper triangle,
from 1̄1̄5 tear out,
4̄8 leave. Igi 4̄8 detach, 0; 1̄1̄5 you see, 0; 1̄1̄5 to 3̄6
raise,
0; 4̄5 you see. 0; 4̄5 to 2̄ raise, 1̄; 3̄0 you see, to
5̄1̄1; 2̄2̄4 raise,
7̄4̄6; 3̄33̄6 you see. By 7̄4̄6; 3̄33̄6, what is equalside?
2̄1; 3̄6 is equalside, 2̄1; 3̄6 the width of 2nd triangle.
The moiety of 2̄1; 3̄6 break, 1̄0; 4̄8 you see. 1̄0; 4̄8
part detach,
to . . .

The text breaks off at this point.

Here, in line 2 the ‘upper surface means the surface to
the left7 and in line 6 ‘Igi n’ is translated as ‘the n-th
part’.
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Figure 8. Db
2
-146.

The first five lines of the text sets up the problem and
specifies the areas of the various triangles as in Figure
7. The sixth line obtains the ratio AB/AC by mul-
tiplying 4̄5 and the reciprocal (igi) of 1̄0̄. In lines 7
and 8, this ratio, 0; 4̄5 is multiplied with 2̄ to obtain
1̄; 3̄0, which is then multiplied with 8̄6̄ to obtain 1̄29̄, the
square of 2̄7. Here the similarity of the triangle ABD
and ABC is used to obtain AB/AC = BD/AD = 0; 4̄5
and then from the relation (1/2)BD.AD = 8̄6̄ one ob-
tains BD2 = 2(BD/AD)8̄6̄ = 1̄29̄. Line 9 says that
BD = 2̄7 and then using the area of the triangle ob-
tains AD = 3̄6. The text proceeds in a similar fashion
to obtain the length of the other unknown sides of the
inscribed triangles, although the text breaks off before
DE and EF are obtained.

One should note here that the text implicitly assumes
that the triangle ABC is right-angled – an observation
which the text setter probably had in mind because of
the proportion 3 : 4 : 5 of the sides of the triangle
ABC. Also, the similarities of the triangles ABD and
ABC, ADE and ADC, and EDF and EFC are as-
sumed, though never stated. On the contrary, the lines
AD and EF are not drawn perpendicular to BC in the
figure on the tablet. As to why this problem was solved
by using the similarity properties of the triangles and
not by using Pythagoras’ theorem, one can only specu-
late that the solution was illustrative of the use of the
‘surveyor’s formula’ in calculating areas of polygons by
decomposing it into smaller triangles/rectangles which
were similar, though not congruent.

Our next tablet DB2-146 from the old Babylonian pe-
riod exemplifies the use of Pythagoras’ theorem. Here
the accompanying figure from the text is reproduced in
Figure 8.

If, about a rectangle with diagonal, somebody asks
you
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8 Note the ‘typo’ 0; 33 45 in the

text of the tablet.

thus, 1̄; 1̄5 the diagonal, 0; 4̄5 the surface;
length and width corresponding to what? You, by
your proceeding,
1̄; 1̄5, your diagonal, its counterpart lay down:
make them hold: 1̄; 3̄34̄5 come up,
1̄; 3̄34̄5 may your hand hold
0; 4̄5 your surface to two bring: 1̄; 3̄0 comes up.
¿From 1̄; 3̄34̄5 cut off: . . . 0; 3̄34̄5 the remainder
The equalside of 0; 3̄4̄5 take: 0; 1̄5 comes up. Its
half-part,
0; 7̄3̄0 comes up, to 0; 7̄3̄0 raise: 0; 0̄5̄61̄5 comes up
0; 0̄5̄61̄5 your hand. 0; 4̄5 your surface over your
hand,
0; 4̄55̄61̄5 comes up. The equalside of 0; 4̄55̄61̄5 take:
0; 5̄23̄0 comes up, 0; 5̄23̄0 its counterpart lay down,
0; 7̄3̄0 which you have made hold to one
append: from one
cut off.
1̄ your length, 0; 4̄5 the width. If 1̄ the length,
0; 4̄5 the width, the surface and the diagonal corre-
sponding to what?
You by your making, the length make hold:
1̄ comes up . . . may your head hold.
. . .: 0; 4̄5, the width make hold:
0; 3̄34̄5 comes up. To your length append:
1̄; 3̄34̄5 comes up. The equalside of 1̄; 3̄34̄5 take:
1̄; 1̄5 comes up. 1̄; 1̄5 your diagonal. Your length
to the width raise, 0; 4̄5 your surface.
Thus the procedure.

Here the first three lines sets out the problem: given a
rectangle with diagonal 1̄; 1̄5 and area 0; 4̄5 what are its
length and width? The fourth and fifth lines require that
the diagonal of the rectangle be made to hold a square,
i.e. a square with sides of length 1̄; 1̄5. This square has
area 1̄; 3̄34̄5, which we are asked to keep at hand in line
six. In lines seven to nine, two of the original rectangles
are now ‘cut off’ from the square to yield a square of
area 0; 3̄4̄58 and sides of length 0; 1̄5. Comparing with
the texts of other tablets, as well as that of the tablet
YBC 6504, Høyrup concludes that bringing the surface
‘to two’ and then to ‘cut off’ from the square results in
the diagram given in Figure 9. Once the middle square
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Figure 9. The diagram

which follows from the text

of Db
2
-146.

9 See Joseph [10], Smith [11] for

more details.

Figure 10. The Hsuan-thu

diagram.

is known i.e. (1/2)(l − w) = 0; 7̄3̄0, where l and w are
the unknown length and width of the rectangle, lines 10

to 15 establish (1/2)(l + w) =
√

[(1/2)(l − w)]2 + lw =√
0; 0̄5̄61̄5 + 0; 4̄5 =

√
0; 4̄55̄61̄5 = 0; 5̄23̄0. Thus, line 16

concludes that l = 1̄ and w = 0; 4̄5. The remainder of
the text verifies that the solution is correct, by doing a
‘back calculation’.

As an aside compare the figure constructed for the pre-
vious problem with the Hsuan-thu9 diagram from the
ancient Chinese text Chou Pei Suan Ching (The arith-
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“We were on the steamer from America to Japan, and I liked to
take part in the social life on the steamer and so, for instance,
I took part in the dances in the evening.  Paul, somehow, didn’t
like that  too much but he would sit in a chair and look at the
dances.  Once I came back from a dance and took the chair
beside him and he asked me, ‘Heisenberg, why do you dance?’
‘I said, ‘Well, when there are nice girls it is a pleasure to
dance’.  He thought for a long time about it, and after about five
minutes he said, ‘Heisenberg, how do you know before hand
that the girls are nice?’ ”

– Werner Heisenberg on Dirac

10 The ancient Chinese nomen-

clature for the Pythagoras’ theo-

rem.

metic classic of the Gnomon and the circular paths of
the heavens) from around 1000 BCE. This diagram was
used in the book to illustrate the kou-ku10 theorem.




